

Image Formation I Chapter 1 (Forsyth&Ponce) Cameras

Guido Gerig CS-GY 6643, Spring 2016

Acknowledgements:

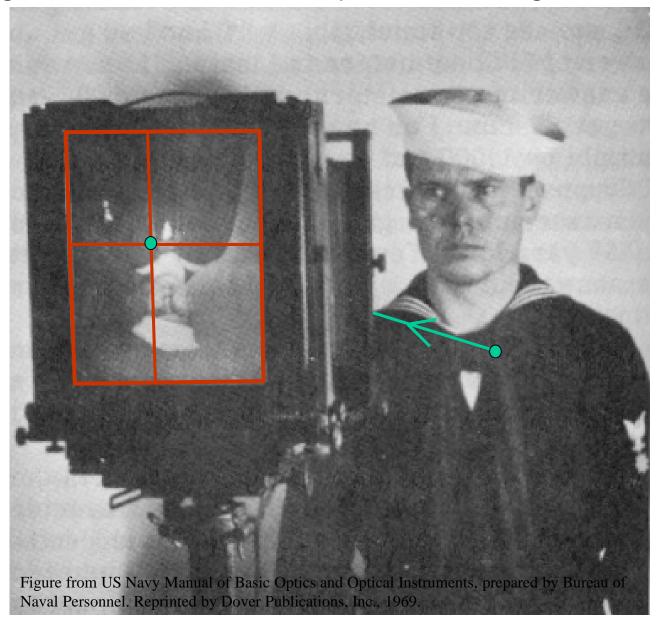
- Slides used from Prof. Trevor Darrell, (http://www.eecs.berkeley.edu/~trevor/CS280.html)
- Some slides modified from Marc Pollefeys, UNC Chapel Hill. Other slides and illustrations from J. Ponce, addendum to course book.

GEOMETRIC CAMERA MODELS

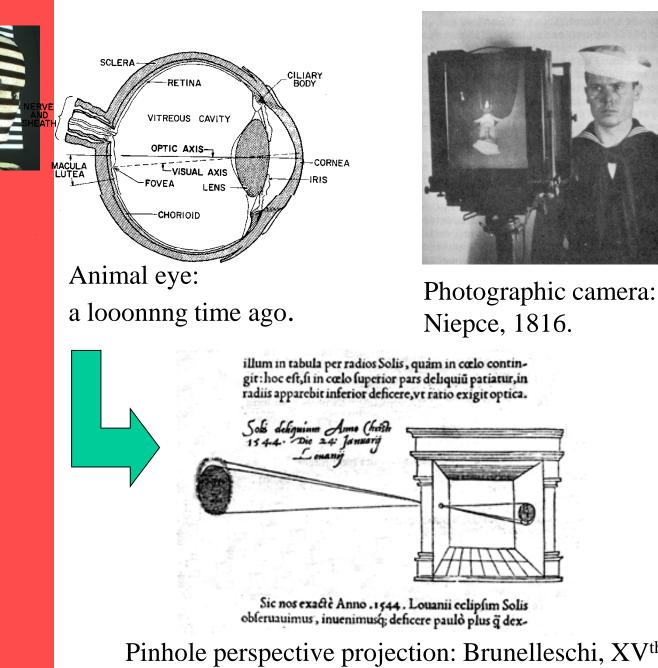
- The Intrinsic Parameters of a Camera
- The Extrinsic Parameters of a Camera
- The General Form of the Perspective Projection Equation
- Line Geometry

```
Reading: Chapter 1.
```


Images are two-dimensional patterns of brightness values.



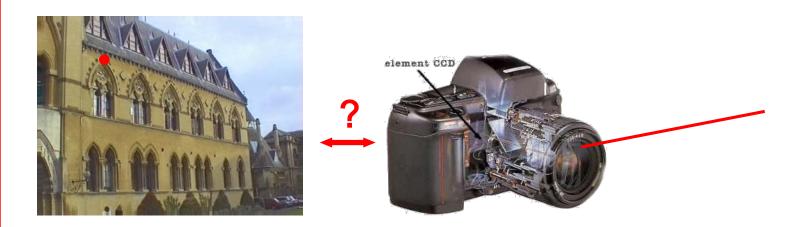
They are formed by the projection of 3D objects.



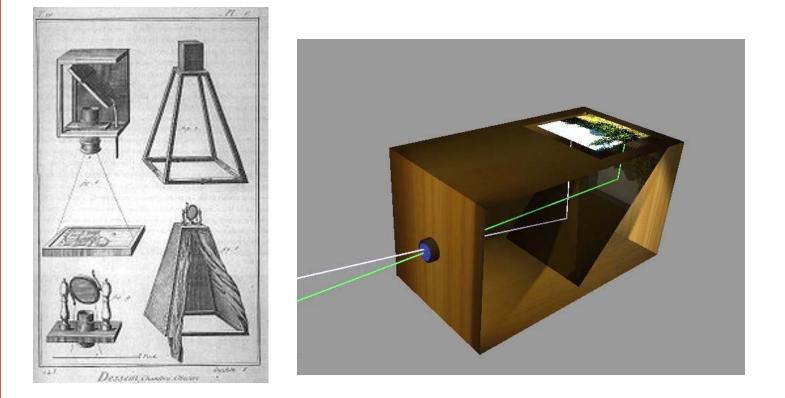
Pinhole perspective projection: Brunelleschi, XVth Century. Camera obscura: XVIth Century.

Camera model

Relation between pixels and rays in space

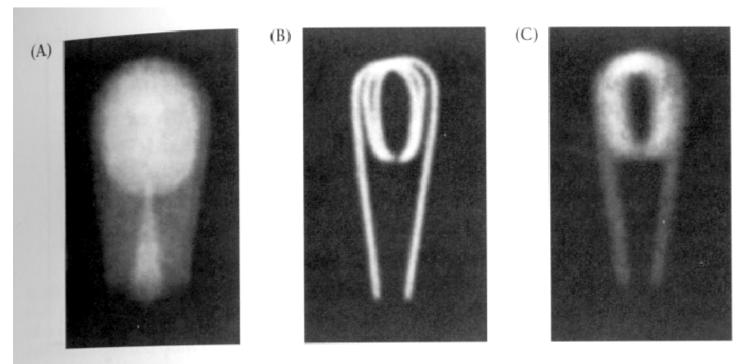


Camera obscura + lens



The **camera obscura** (Latin for 'dark room') is an optical device that projects an <u>image</u> of its surroundings on a screen (source Wikipedia).

Limits for pinhole cameras



2.18 DIFFRACTION LIMITS THE QUALITY OF PINHOLE OPTICS. These three images of a bulb filament were made using pinholes with decreasing size. (A) When the pinhole is relatively large, the image rays are not properly converged, and the image is blurred.
(B) Reducing the size of the pinhole improves the focus. (C) Reducing the size of the pinhole further worsens the focus, due to diffraction. From Ruechardt, 1958.

Physical parameters of image formation

- Geometric
 - Type of projection
 - Camera pose
- Photometric
 - Type, direction, intensity of light reaching sensor
 - Surfaces' reflectance properties
- Optical
 - Sensor's lens type
 - focal length, field of view, aperture
- Sensor
 - sampling, etc.

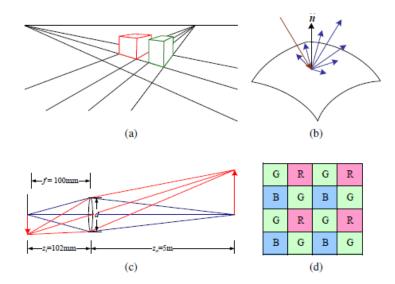


Figure 2.1 A few components of the image formation process: (a) perspective projection; (b) light scattering when hitting a surface; (c) lens optics; (d) Bayer color filter array.

Physical parameters of image formation

Geometric

- Type of projection
- Camera pose
- Optical
 - Sensor's lens type
 - focal length, field of view, aperture
- Photometric
 - Type, direction, intensity of light reaching sensor
 - Surfaces' reflectance properties
- Sensor
 - sampling, etc.

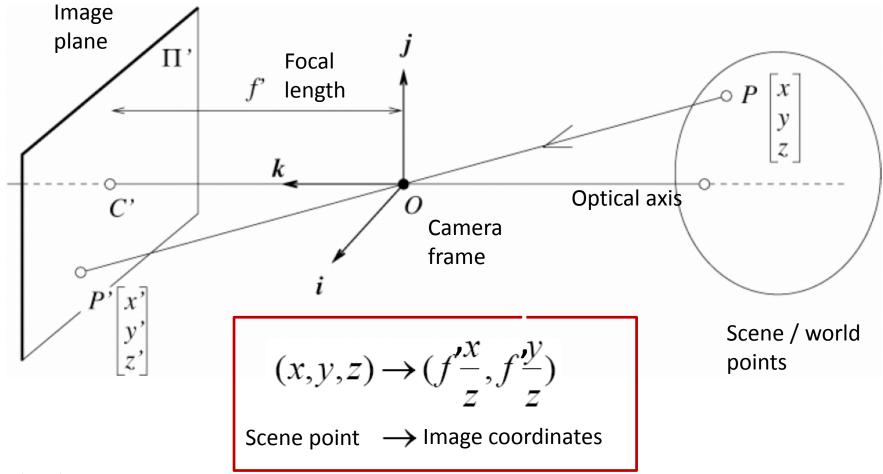
Perspective and art

- Use of correct perspective projection indicated in 1st century B.C. frescoes
- Skill resurfaces in Renaissance: artists develop systematic methods to determine perspective projection (around 1480-1515)

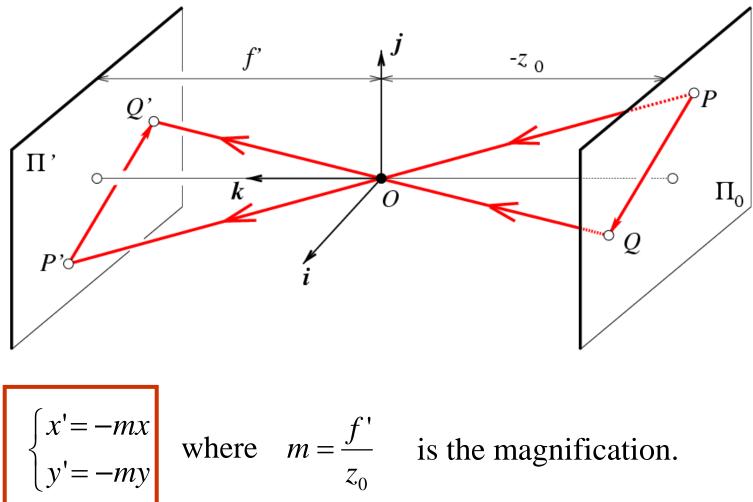
Durer, 1525

Perspective projection equations

• 3d world mapped to 2d projection in image plane

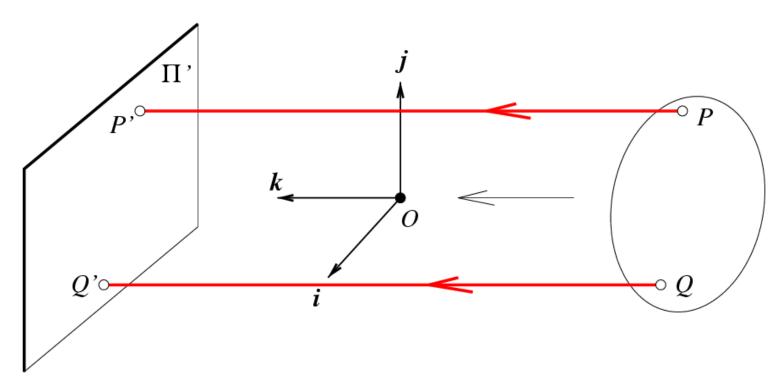


Affine projection models: Weak perspective projection



When the scene relief is small compared to its distance from the Camera, m can be taken constant: weak perspective projection.

Affine projection models: Orthographic projection



$$\begin{cases} x' = x \\ y' = y \end{cases}$$

When the camera is at a (roughly constant) distance from the scene, take m=1.

Homogeneous coordinates

Is this a linear transformation?

• no-division by z is nonlinear

Trick: add one more coordinate:

$$(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image
coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous scene
coordinates

Converting *from* homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Perspective Projection Matrix

• Projection is a matrix multiplication using homogeneous coordinates:

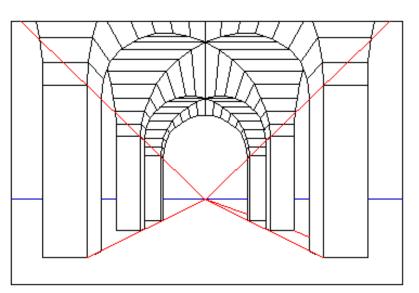
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1/f' & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z/f' \end{bmatrix} \Rightarrow$$

$$\Rightarrow (f'\frac{x}{z}, f'\frac{y}{z})$$

divide by the third coordinate to convert back to nonhomogeneous coordinates

Complete mapping from world points to image pixel positions?

Points at infinity, vanishing points



Points from infinity represent rays into camera which are close to the optical axis.

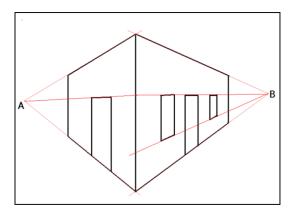
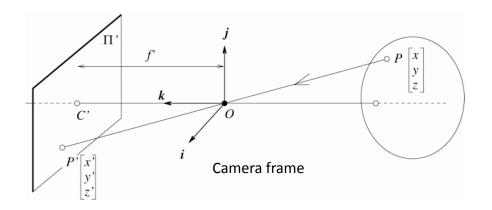


Image source: wikipedia

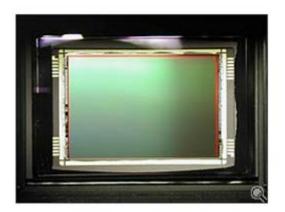
Perspective projection & calibration

- Perspective equations so far in terms of *camera's* reference frame....
- Camera's *intrinsic* and *extrinsic* parameters needed to calibrate geometry.

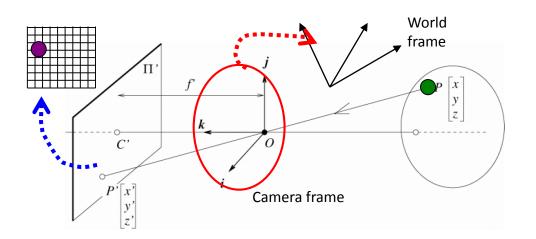


The CCD camera

CCD camera



Perspective projection & calibration

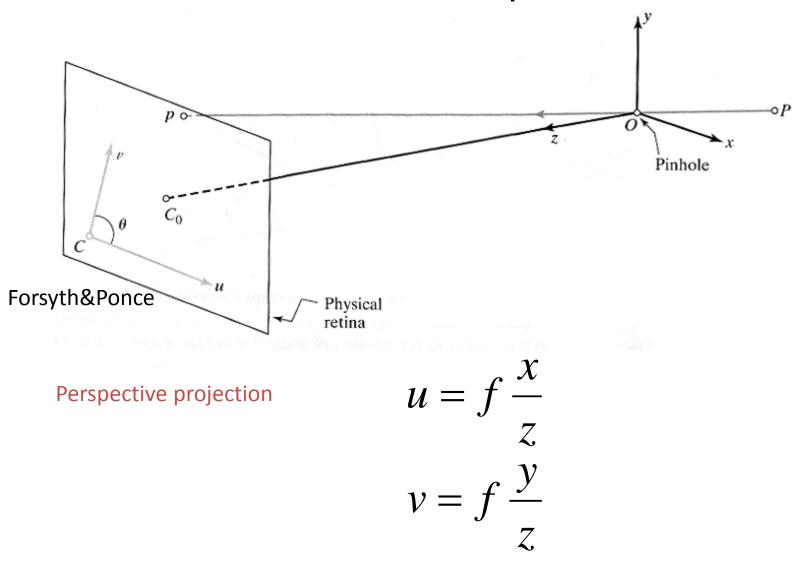


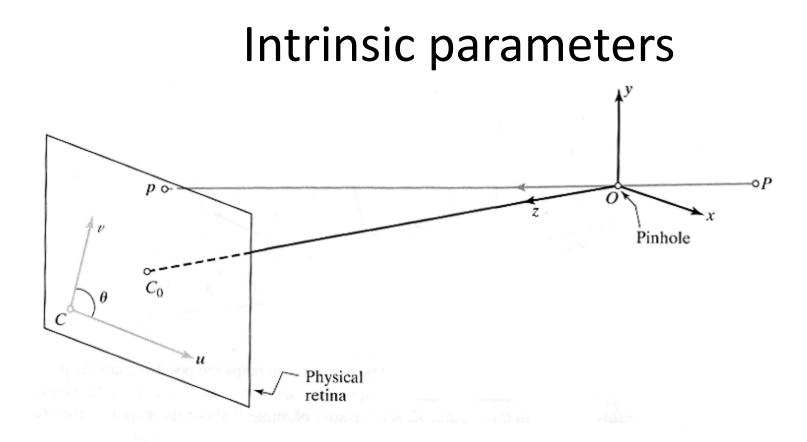
Extrinsic: Camera frame $\leftarrow \rightarrow$ World frame

Intrinsic:

Image coordinates relative to camera $\leftarrow \rightarrow$ Pixel coordinates

Intrinsic parameters: from idealized world coordinates to pixel values

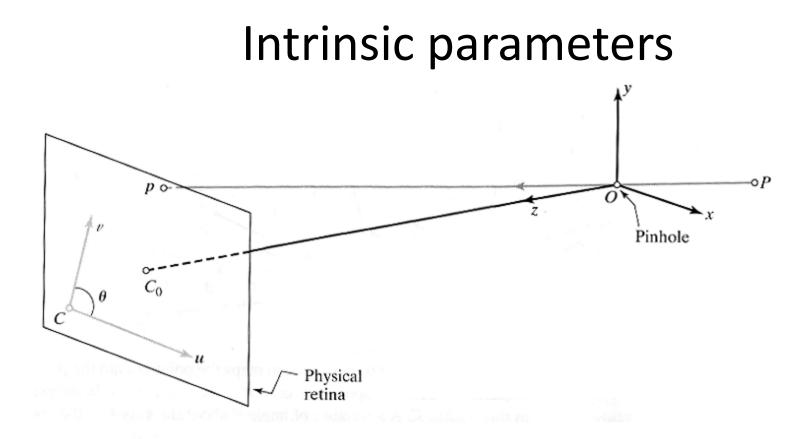




But "pixels" are in some arbitrary spatial units

$$u = \alpha - \frac{x}{z}$$
$$v = \alpha - \frac{y}{z}$$

r



Maybe pixels are not square

$$u = \alpha - \frac{x}{z}$$
$$v = \beta - \frac{y}{z}$$

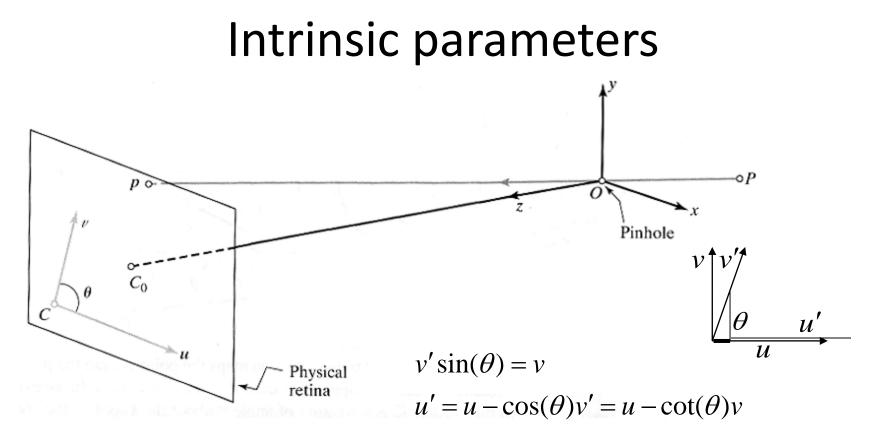
r

Intrinsic parameters $\circ P$ DO Pinhole Physical retina

We don't know the origin of our camera pixel coordinates

 $u = \alpha \frac{x}{z} + u_0$

$$v = \beta \frac{y}{z} + v_0$$

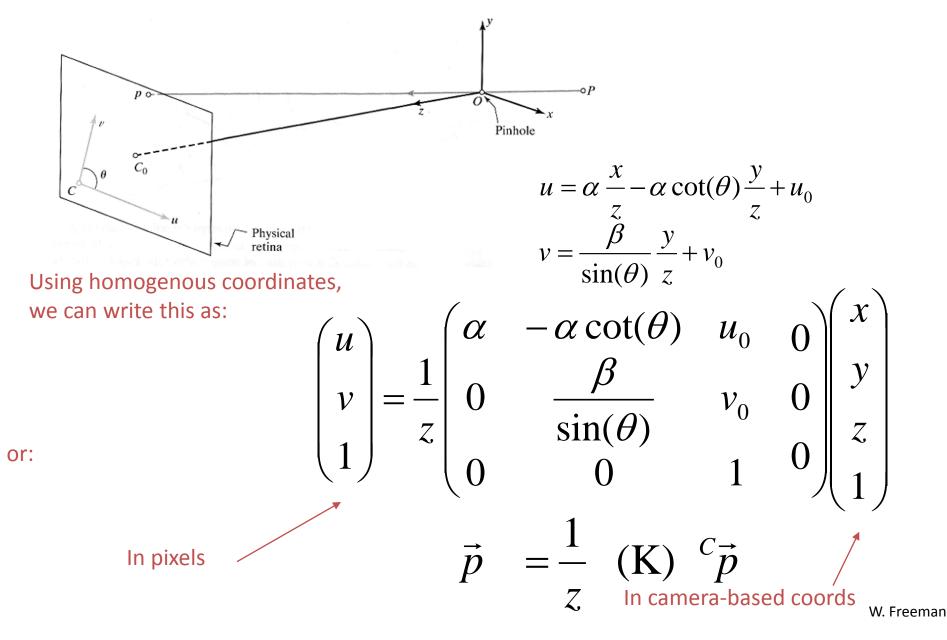


May be skew between camera pixel axes

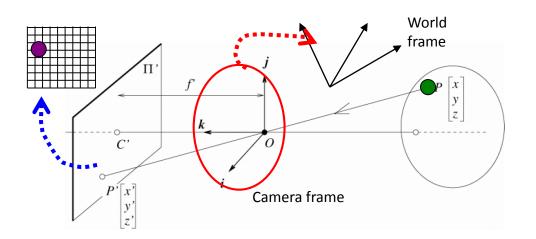
$$u = \alpha \frac{x}{z} - \alpha \cot(\theta) \frac{y}{z} + u_0$$
$$v = \frac{\beta}{\sin(\theta)} \frac{y}{z} + v_0$$

W. Freeman

Intrinsic parameters, homogeneous coordinates



Perspective projection & calibration

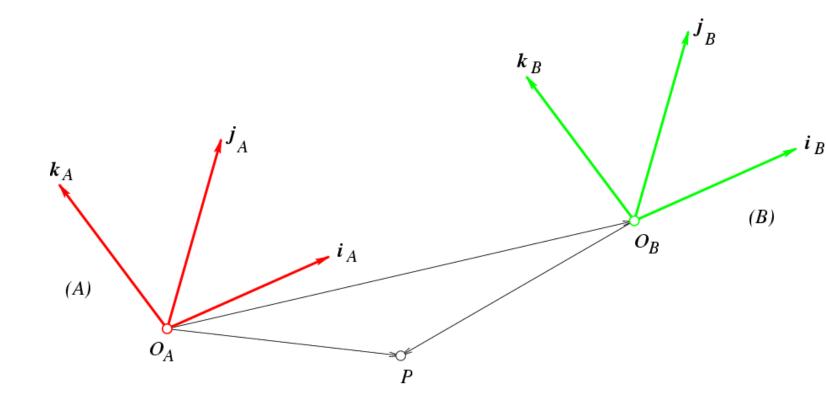


Extrinsic: Camera frame $\leftarrow \rightarrow$ World frame

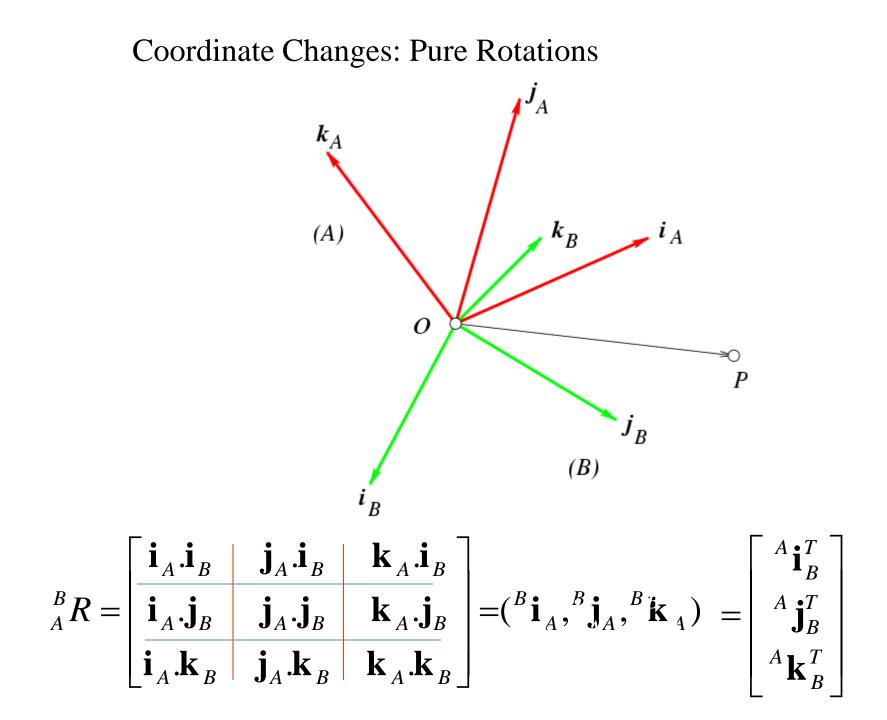
Intrinsic:

Image coordinates relative to camera $\leftarrow \rightarrow$ Pixel coordinates

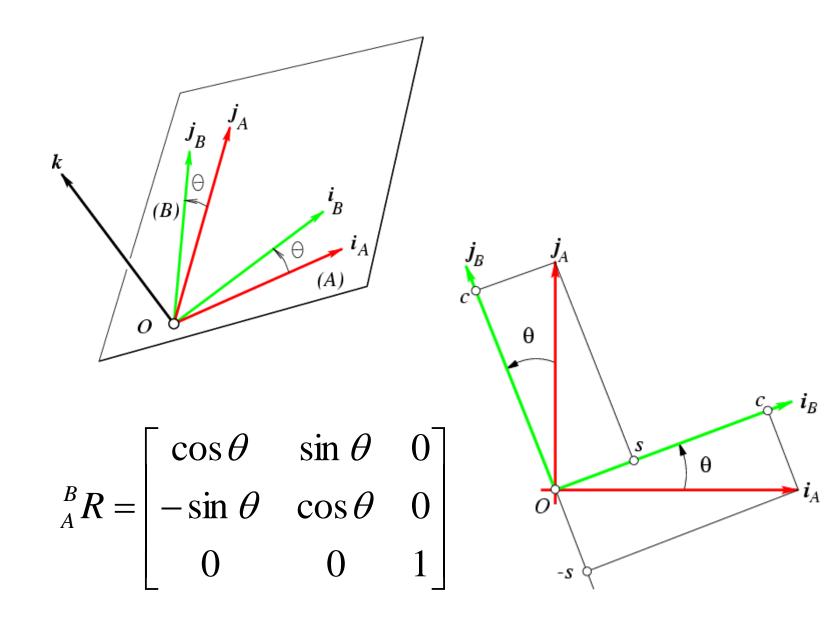
Coordinate Changes: Pure Translations



 $\overrightarrow{O_BP} = \overrightarrow{O_BO_A} + \overrightarrow{O_AP}$, $^BP = ^AP + ^BO_A$



Coordinate Changes: Rotations about the *k* Axis

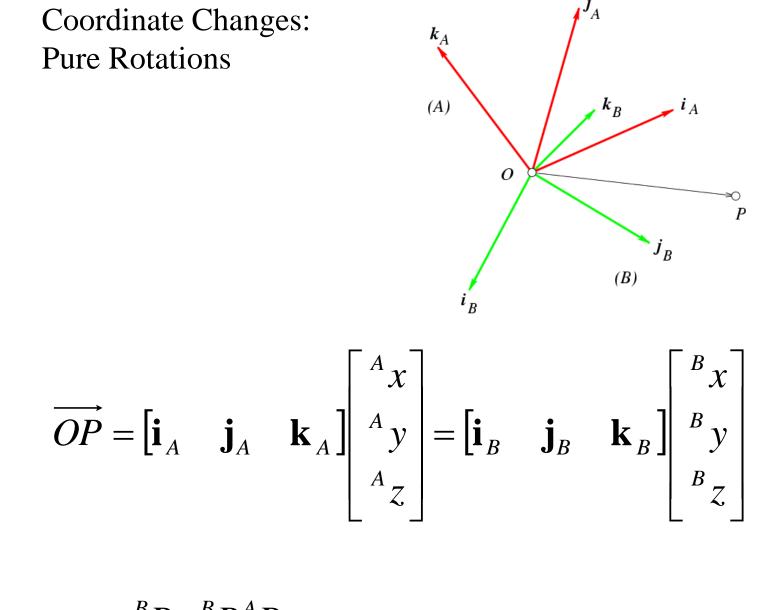


A rotation matrix is characterized by the following properties:

- Its inverse is equal to its transpose, and
- its determinant is equal to 1.

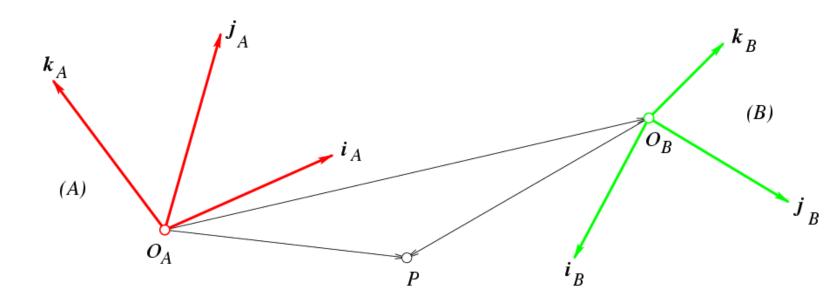
Or equivalently:

• Its rows (or columns) form a right-handed orthonormal coordinate system.



 $\Rightarrow {}^{B}P = {}^{B}_{A}R^{A}P$

Coordinate Changes: Rigid Transformations



 ${}^{B}P = {}^{B}_{A}R {}^{A}P + {}^{B}O_{A}$

Block Matrix Multiplication

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

What is *AB* ?

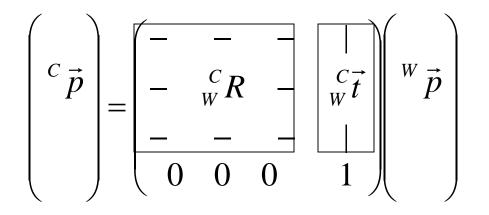
$$AB = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Homogeneous Representation of Rigid Transformations

$$\begin{bmatrix} {}^{B}P \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{B}R & {}^{B}O_{A} \\ \mathbf{0}^{T} & 1 \end{bmatrix} \begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix} = \begin{bmatrix} {}^{B}R & {}^{A}P + {}^{B}O_{A} \\ 1 \end{bmatrix} = {}^{B}_{A}T \begin{bmatrix} {}^{A}P \\ 1 \end{bmatrix}$$

Extrinsic parameters: translation and rotation of camera frame

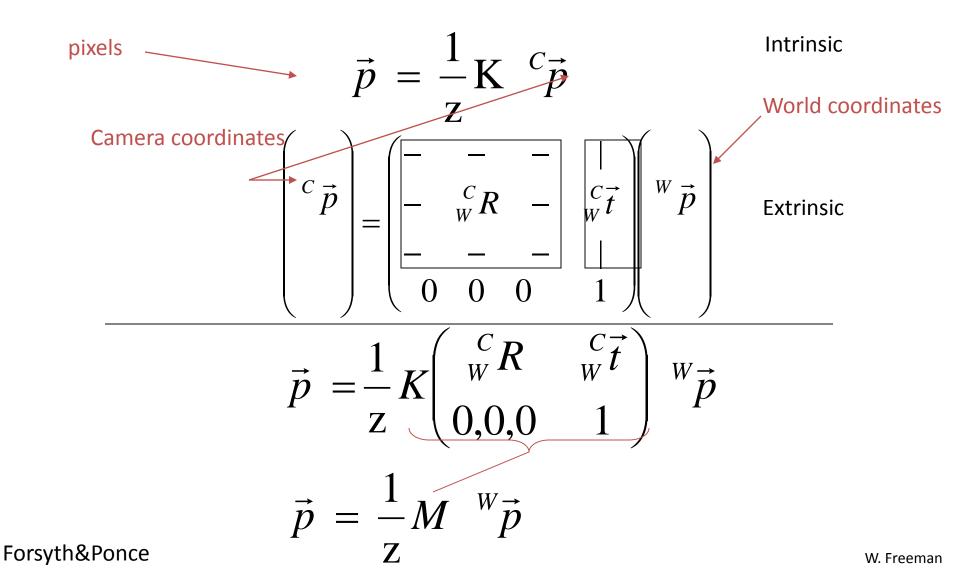
$${}^{C}\vec{p} = {}^{C}_{W}R {}^{W}\vec{p} + {}^{C}_{W}\vec{t}$$



Non-homogeneous coordinates

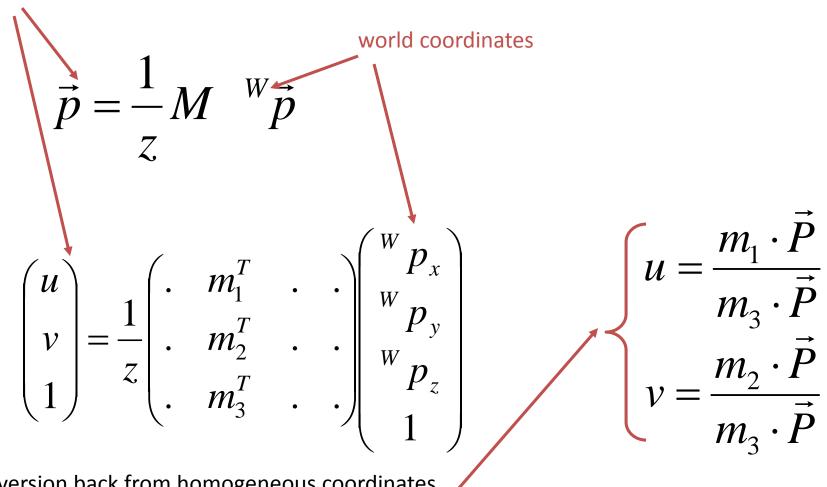
Homogeneous coordinates

Combining extrinsic and intrinsic calibration parameters, in homogeneous coordinates



Other ways to write the same equation

pixel coordinates



Conversion back from homogeneous coordinates leads to (note that $z = m_3^T P$):

Extrinsic Parameters

• When the camera frame (C) is different from the world frame (W), $\binom{^{C}P}{1} = \binom{^{C}C}{\mathbf{0}^{T}} \binom{^{C}O_{W}}{1} \binom{^{W}P}{1}.$

• Thus,

$$oldsymbol{p} = rac{1}{z} \mathcal{M} oldsymbol{P}, ext{ where } egin{array}{cc} \mathcal{M} = \mathcal{K} \left(\mathcal{R} & oldsymbol{t}
ight), \ \mathcal{R} = {}^C_W \mathcal{R}, \ oldsymbol{t} = {}^C O_W, \ \mathcal{P} = \left({}^W_W oldsymbol{P}
ight). \end{cases}$$

• Note: z is *not* independent of \mathcal{M} and \mathbf{P} :

$$\mathcal{M} = egin{pmatrix} oldsymbol{m}_1^T \ oldsymbol{m}_2^T \ oldsymbol{m}_3^T \end{pmatrix} \Longrightarrow z = oldsymbol{m}_3 \cdot oldsymbol{P}, \quad ext{or} \quad \left\{egin{array}{c} u = rac{oldsymbol{m}_1 \cdot oldsymbol{P}}{oldsymbol{m}_3 \cdot oldsymbol{P}}, \ v = rac{oldsymbol{m}_2 \cdot oldsymbol{P}}{oldsymbol{m}_3 \cdot oldsymbol{P}}. \end{array}
ight.$$

Explicit Form of the Projection Matrix

$$\mathcal{M} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \boldsymbol{r}_3^T & \boldsymbol{t}_z \end{pmatrix}$$

Note: If $\mathcal{M} = (\mathcal{A} \ \mathbf{b})$ then $|\mathbf{a}_3| = 1$.

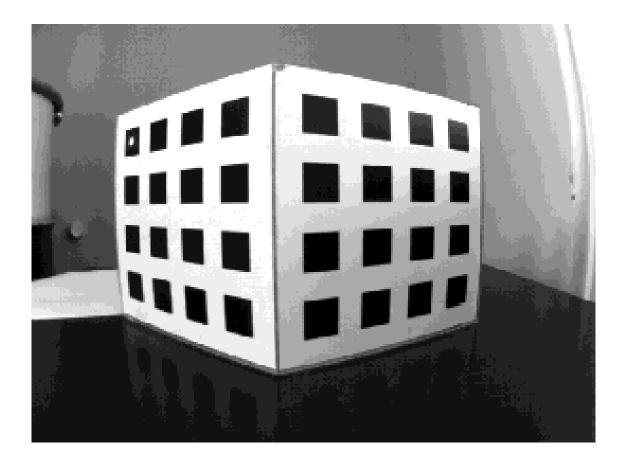
Replacing \mathcal{M} by $\lambda \mathcal{M}$ in

$$egin{aligned} u = rac{oldsymbol{m}_1 \cdot oldsymbol{P}}{oldsymbol{m}_3 \cdot oldsymbol{P}} \ v = rac{oldsymbol{m}_2 \cdot oldsymbol{P}}{oldsymbol{m}_3 \cdot oldsymbol{P}} \end{aligned}$$

does not change u and v.

M is only defined up to scale in this setting!!

Calibration target



The Opti-CAL Calibration Target Image

Find the position, u_i and v_i , in pixels, of each calibration object feature point.

http://www.kinetic.bc.ca/CompVision/opti-CAL.html