Reconstruction/Triangulation Old book Ch11.1 F\&P New book Ch7.2 F\&P

Guido Gerig
CS-GY 6643, Spring 2016 gerig@nyu.edu (modified from original slides by J. Ponce and by Marc Pollefeys)

Reconstruction

Triangulate on two images of the same point to recover depth.

- Feature matching across views
- Calibrated cameras

Only need to match features across epipolar lines

Reconstruction from Rectified Images

Disparity: $d=u$ ' $-u$
Depth: $z=-B f / d$

Problem statement

Given: corresponding measured (i.e. noisy) points \mathbf{x} and \mathbf{x}^{\prime}, and cameras (exact) P and P^{\prime}, compute the 3D point \mathbf{X}

Problem: in the presence of noise, back projected rays do not intersect

Problem statement

Given: corresponding measured (i.e. noisy) points \mathbf{x} and \mathbf{x}^{\prime}, and cameras (exact) P and P^{\prime}, compute the 3D point \mathbf{X}

Problem: in the presence of noise, back projected rays do not intersect

Measured points do not lie on corresponding epipolar lines

1. Vector solution

Compute the mid-point of the shortest line between the two rays

Solution from Trucco \& Verri Book

P is midpoint of the segment perpendicular to P_{1} and $R^{T} P_{r}$
Let $w=P_{1} \times R^{T} P_{r}$ (this is perpendicular to both)

Introducing three unknown scale factors $\mathrm{a}, \mathrm{b}, \mathrm{c}$ we note we can write down the equation of a "circuit"

Solution from Trucco \& Verri Book

Writing vector "circuit diagram" with unknowns a,b,c

$$
a P_{1}+c\left(P_{1} X R^{T} P_{r}\right)-b R^{T} P_{r}=T
$$

note: this is three linear equations in three unknowns $\mathrm{a}, \mathrm{b}, \mathrm{c}$ \Rightarrow can solve for $\mathrm{a}, \mathrm{b}, \mathrm{c}$

Solution from Trucco \& Verri Book

After finding $\mathrm{a}, \mathrm{b}, \mathrm{c}$, solve for midpoint of line segment between points $\mathrm{O}_{1}+\mathbf{a} \mathbf{P}_{1}$ and $\mathrm{O}_{1}+\mathrm{T}+\mathbf{b} \mathrm{R}^{\mathrm{T}} \mathbf{P}_{\mathrm{r}}$

Source: Collins, CSE486 Penn State

2. Linear triangulation (algebraic solution)

Use the equations $\mathrm{x}=\mathrm{PX}$ and $\mathrm{x}^{\prime}=\mathrm{P}^{\prime} \mathbf{X}$ to solve for \mathbf{X}
For the first camera:

$$
\mathrm{P}=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{p}^{1 \top} \\
\mathbf{p}^{2 \top} \\
\mathbf{p}^{3 \top}
\end{array}\right]
$$

where $\mathbf{p}^{i \top}$ are the rows of P

- eliminate unknown scale in $\lambda \mathrm{x}=\mathrm{PX}$ by forming a cross product $\mathrm{x} \times(\mathrm{PX})=\mathbf{0}$

$$
\begin{aligned}
x\left(\mathbf{p}^{3 \top} \mathbf{X}\right)-\left(\mathbf{p}^{1 \top} \mathbf{X}\right) & =0 \\
y\left(\mathbf{p}^{3 \top} \mathbf{X}\right)-\left(\mathbf{p}^{2 \top} \mathbf{X}\right) & =0 \\
x\left(\mathbf{p}^{2 \top} \mathbf{X}\right)-y\left(\mathbf{p}^{1 \top} \mathbf{X}\right) & =0
\end{aligned}
$$

- rearrange as (first two equations only)

$$
\left[\begin{array}{l}
x \mathbf{p}^{3 \top}-\mathbf{p}^{1 \top} \\
y \mathbf{p}^{3 \top}-\mathbf{p}^{2 \top}
\end{array}\right] \mathbf{X}=\mathbf{0}
$$

Similarly for the second camera:

$$
\left[\begin{array}{l}
x^{\prime} \mathbf{p}^{\prime 3 \top}-\mathbf{p}^{\prime 1 \top} \\
y^{\prime} \mathbf{p}^{\prime 3 T}-\mathbf{p}^{\prime 2 \top}
\end{array}\right] \mathbf{X}=\mathbf{0}
$$

Collecting together gives

$$
A X=0
$$

where A is the 4×4 matrix

$$
\mathrm{A}=\left[\begin{array}{c}
x \mathbf{p}^{3 \top}-\mathbf{p}^{1 T} \\
y \mathbf{p}^{3 T}-\mathbf{p}^{2 T} \\
x^{\prime} \mathbf{p}^{\prime 3 T}-\mathbf{p}^{\prime 1 T} \\
y^{\prime} \mathbf{p}^{\prime 3 T}-\mathbf{p}^{\prime 2 T}
\end{array}\right]
$$

from which X can be solved up to scale.

Problem: does not minimize anything meaningful
Advantage: extends to more than two views

3. Minimizing a geometric/statistical error

The idea is to estimate a 3D point $\widehat{\mathrm{X}}$ which exactly satisfies the supplied camera geometry, so it projects as

$$
\widehat{x}=P \widehat{X} \quad \widehat{x}^{\prime}=P^{\prime} \widehat{\mathrm{x}}
$$

and the aim is to estimate $\widehat{\mathrm{x}}$ from the image measurements x and x^{\prime}.

$\min _{\widehat{\mathbf{X}}} \mathcal{C}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=d(\mathbf{x}, \hat{\mathbf{x}})^{2}+d\left(\mathbf{x}^{\prime}, \hat{\mathbf{x}}^{\prime}\right)^{2}$
where $d(*, *)$ is the Euclidean distance between the points.

- It can be shown that if the measurement noise is Gaussian mean zero, $\sim N\left(0, \sigma^{2}\right)$, then minimizing geometric error is the Maximum Likelihood Estimate of X
- The minimization appears to be over three parameters (the position X), but the problem can be reduced to a minimization over one parameter

Different formulation of the problem

The minimization problem may be formulated differently:

- Minimize

$$
d(\mathbf{x}, \mathbf{l})^{2}+d\left(\mathbf{x}^{\prime}, \mathbf{l}^{\prime}\right)^{2}
$$

$\bullet l$ and l^{\prime} range over all choices of corresponding epipolar lines.
$\bullet \hat{\mathbf{x}}$ is the closest point on the line \mathbf{l} to \mathbf{x}.

- Same for $\hat{\mathbf{x}}^{\prime}$.

Minimization method

- Parametrize the pencil of epipolar lines in the first image by t, such that the epipolar line is $\mathbf{l}(t)$
- Using F compute the corresponding epipolar line in the second image $\mathbf{l}^{\prime}(t)$
- Express the distance function $d(\mathbf{x}, \mathbf{l})^{2}+d\left(\mathbf{x}^{\prime}, \mathbf{l}^{\prime}\right)^{2}$ explicitly as a function of t
- Find the value of t that minimizes the distance function
- Solution is a $6^{\text {th }}$ degree polynomial in t

More slides for self-study.
路
\square

\author{ \author{

\qquad

O

(

\square

\square } }都

Triangulation (finally!)

Triangulation

- Backprojection

$$
\lambda \mathrm{x}=\mathbf{P X}
$$

Triangulation

- Backprojection

$$
\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{P}_{2} \\
\mathrm{P}_{3}
\end{array}\right] \mathrm{X}
$$

Triangulation

- Backprojection

$$
\left.\begin{array}{c}
\lambda \mathrm{x}=\mathrm{PX} \\
\mathrm{P}_{3} \mathrm{X} x=\mathrm{P}_{1} \mathrm{X} \\
\mathrm{P}_{3} \mathrm{X} y=\mathrm{P}_{2} \mathrm{X}
\end{array} \quad\left[\begin{array}{c}
\lambda y \\
\lambda
\end{array}\right]^{-}\left[\begin{array}{l}
\mathrm{P}_{3} x-\mathrm{P}_{1} \\
\mathrm{P}_{3}
\end{array}\right]_{3} \mathrm{P} y-\mathrm{P}_{2}\right] \mathrm{X}=0
$$

Triangulation

- Backprojection

$$
\begin{gathered}
\lambda \mathrm{x}=\mathrm{PX} \\
\mathrm{P}_{3} \mathrm{X} x=\mathrm{P}_{1} \mathrm{X} \\
\mathrm{P}_{3} \mathrm{X} y=\mathrm{P}_{2} \mathrm{X}
\end{gathered} \quad\left[\begin{array}{c}
\mathrm{N} y \\
\lambda
\end{array}\right]^{-}\left[\begin{array}{l}
\mathrm{P}_{3} \\
\mathrm{P}_{3} x-\mathrm{P}_{1} \\
\mathrm{P}_{3} y-\mathrm{P}_{2}
\end{array}\right]^{\wedge} \mathrm{X}=0
$$

- Triangulation

$$
\left[\begin{array}{c}
\mathrm{P}_{3} x-\mathrm{P}_{1} \\
\mathrm{P}_{3} y-\mathrm{P}_{2} \\
\mathrm{P}_{3}^{\prime} x^{\prime}-\mathrm{P}_{1}^{\prime} \\
\mathrm{P}_{3}^{\prime} y^{\prime}-\mathrm{P}_{2}^{\prime}
\end{array}\right] \mathrm{x}=0
$$

Triangulation

- Backprojection

$$
\left[\begin{array}{c}
\lambda x \\
\lambda y \\
\lambda
\end{array}\right]=\left[\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{P}_{2} \\
\mathrm{P}_{3}
\end{array}\right] \mathrm{X}
$$

$$
\begin{gathered}
\lambda \mathrm{x}=\mathrm{PX} \\
\mathrm{P}_{3} \mathrm{X} x=\mathrm{P}_{1} \mathrm{X} \\
\mathrm{P}_{3} \mathrm{X} y=\mathrm{P}_{2} \mathrm{X}
\end{gathered} \quad\left[\begin{array}{c}
\mathrm{P} \\
\lambda
\end{array}\right] \quad\left[\begin{array}{l}
\mathrm{P}_{3} x-\mathrm{P}_{1} \\
\mathrm{P}_{3} y-\mathrm{P}_{2}
\end{array}\right] \mathrm{X}=0
$$

- Triangulation

Iterative leastsquares

Triangulation

- Backprojection

$$
\begin{gathered}
\lambda \mathrm{x}=\mathrm{PX} \\
\mathrm{P}_{3} \mathrm{X} x=\mathrm{P}_{1} \mathrm{X} \\
\mathrm{P}_{3} \mathrm{X} y=\mathrm{P}_{2} \mathrm{X}
\end{gathered} \quad\left[\begin{array}{c}
\lambda \\
\lambda
\end{array}\right]\left[\begin{array}{l}
\mathrm{P}_{3} x-\mathrm{P}_{1} \\
\mathrm{P}_{3} y-\mathrm{P}_{2}
\end{array}\right] \mathrm{X}=0
$$

- Triangulation
- Maximum Likelihood Trian Iterative least$\arg \min _{\mathrm{X}} \sum_{i}\left(\mathrm{x}_{i}-\lambda^{-1} \mathbf{P}_{i} \mathrm{X}\right)^{2}$

Optimal 3D point in epipolar plane

- Given an epipolar plane, find best 3D point for $\left(m_{1}, m_{2}\right)$

Optimal 3D point in epipolar plane

- Given an epipolar plane, find best 3D point for

Select closest points ($\mathrm{m}_{1}{ }^{\prime}, \mathrm{m}_{2}{ }^{\prime}$) on epipolar lines
Obtain 3D point through exact triangulation
Guarantees minimal reprojection error (given this epipolar plane)

Non-iterative optimal solution

- Reconstruct matches in projective frame by minimizing the reprojection error

$$
D\left(\mathbf{m}_{1}, \mathbf{P}_{1} \mathbf{M}\right)^{2}+D\left(\mathbf{m}_{2}, \mathbf{P}_{2} \mathbf{M}\right)^{2} \quad 3 D O F
$$

- Non-iterative method

Determine the epipolar plane for reconstruction
(Hartley and Sturm, CVIU'97)

$$
D\left(\mathbf{m}_{1}, \mathbf{l}_{1}(\alpha)\right)^{2}+D\left(\mathbf{m}_{2}, \mathbf{l}_{2}(\alpha)\right)^{2}{ }_{(\text {polynomial of degree } 6)}
$$

Reconstruct optimal point from selected epipolar
plane Note: only works for two views

Backprojection

- Represent point as intersection of row and column

$$
\begin{aligned}
& \text { present point as intersectıon ot row and column } \\
& \left.\mathrm{x}=\mathrm{l}_{x} \times \mathrm{l}_{y} \text { with } \mathrm{l}_{x}=\left[\begin{array}{c}
-1 \\
0 \\
x
\end{array}\right], \mathrm{I}_{y}=\left.\left[\begin{array}{c}
0 \\
-1 \\
y
\end{array}\right] \quad\right|_{0} ^{1_{x}} \begin{array}{l}
\mathrm{x} \\
\mathrm{I}
\end{array}\right] \\
& \Pi=\mathrm{l}^{\top} \mathrm{l}
\end{aligned}
$$

Backprojection

- Represent point as intersection of row and column

$$
\begin{aligned}
& \mathrm{x}=1_{x} \times 1_{y} \text { with } 1_{x}=\left[\begin{array}{c}
-1 \\
0 \\
x
\end{array}\right], 1_{y}=\left[\begin{array}{c}
0 \\
-1 \\
y
\end{array}\right] \\
& \Pi=\mathrm{P}^{\top} \mathrm{l} \\
& {\left[\begin{array}{l}
\Pi_{x}^{\top} \\
\Pi_{y}^{\top}
\end{array}\right] \mathrm{X}=0 \quad\left[\begin{array}{c}
l_{x}^{\top} \mathrm{P} \\
1_{y}^{\top} \mathrm{P}
\end{array}\right] \mathrm{X}=0}
\end{aligned}
$$

Backprojection

- Represent point as intersection of row and column

$$
\left[\begin{array}{l}
\Pi_{x}^{\top} \\
\Pi_{y}^{\top}
\end{array}\right] \mathrm{x}=0 \quad\left[\begin{array}{l}
l_{x}^{\top} \mathrm{p} \\
l_{y}^{\top} \mathrm{p}
\end{array}\right] \mathrm{x}=0
$$

- Condition for solution?

$$
\begin{aligned}
& \mathrm{x}=l_{x} \times l_{y} \text { with } l_{x}=\left[\begin{array}{c}
-1 \\
0 \\
x
\end{array}\right], l_{y}=\left[\begin{array}{c}
0 \\
-1 \\
y
\end{array}\right] \\
& \Pi=\mathrm{P}^{\top} 1
\end{aligned}
$$

Backprojection

- Represent point as intersection of row and column

$$
\begin{aligned}
& \mathrm{x}=1_{x} \times 1_{y} \text { with } 1_{x}=\left[\begin{array}{c}
-1 \\
0 \\
x
\end{array}\right], 1_{y}=\left[\begin{array}{c}
0 \\
-1 \\
y
\end{array}\right] \\
& \Pi=\mathrm{P}^{\top} 1
\end{aligned}
$$

$$
\left[\begin{array}{l}
\Pi_{x}^{\top} \\
\Pi_{y}^{\top}
\end{array}\right] \mathrm{X}=0 \quad\left[\begin{array}{l}
1_{x}^{\top} \mathrm{P} \\
1_{y}^{\top} \mathrm{P}
\end{array}\right] \mathrm{x}=0
$$

- Condition for solution?

$$
\operatorname{det}\left[\begin{array}{c}
l_{x}^{\top} \mathrm{P} \\
l_{y}^{\top} \mathrm{P} \\
\mathrm{l}_{x^{\prime}}^{\top} \mathrm{P}^{\prime} \\
\mathrm{l}_{y^{\prime}}^{\prime} \mathrm{P}^{\prime}
\end{array}\right]=0
$$

Useful presentation for deriving and understanding multiple view geometry (notice 3D planes are linear in 2D point coordinates)

Geometric Reconstruction

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same plane.

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same plane.

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same plane.

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same plane.

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same plane.

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same plane.

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O^{\prime} of the two cameras, and the two images p and p^{\prime} of P all lie in the same plane.

$$
\begin{aligned}
& P=R P^{\prime}+t \\
& P^{\prime}=R^{-1}(P-t)=R^{T}(P-t)
\end{aligned}
$$

Reconstruction

Reconstruction

$$
p^{\prime}=f^{\prime} \frac{P^{\prime}}{Z^{\prime}}
$$

Reconstruction

$$
\begin{aligned}
p^{\prime} & =f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
P^{\prime} & =R^{T}(P-t)=R^{\prime}(P-t)
\end{aligned}
$$

Reconstruction

$$
\begin{aligned}
& p^{\prime}=f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
& P^{\prime}=R^{T}(P-t)=R^{\prime}(P-t)
\end{aligned}
$$

$$
R^{\prime}=\left[\begin{array}{c}
R_{1}^{\prime T} \\
R_{2}^{\prime T} \\
R_{3}^{\prime T}
\end{array}\right]
$$

Reconstruction

$$
\begin{aligned}
p^{\prime} & =f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
P^{\prime} & =R^{T}(P-t)=R^{\prime}(P-t) \\
p^{\prime} & =f^{\prime} \frac{R^{\prime}(P-t)}{R_{3}^{\prime T}(P-t)}
\end{aligned}
$$

$$
R^{\prime}=\left[\begin{array}{l}
R_{1}^{\prime T} \\
R_{2}^{\prime T} \\
R_{3}^{\prime T}
\end{array}\right]
$$

Reconstruction

$$
\begin{aligned}
& p^{\prime}=f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
& P^{\prime}=R^{T}(P-t)=R^{\prime}(P-t) \\
& p^{\prime}=f^{\prime} \frac{R^{\prime}(P-t)}{{R_{3}^{\prime T}}^{T}(P-t)} \\
& x^{\prime}=f^{\prime} \frac{R_{1}^{\prime T}(P-t)}{R_{3}^{T}(P-t)}
\end{aligned}
$$

Reconstruction

$$
\begin{aligned}
& p^{\prime}=f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
& P^{\prime}=R^{T}(P-t)=R^{\prime}(P-t) \\
& p^{\prime}=f^{\prime} \frac{R^{\prime}(P-t)}{{R_{3}^{\prime T}(P-t)}^{x^{\prime}}=f^{\prime} \frac{R_{1}^{T}(P-t)}{R_{3}^{T}(P-t)}}
\end{aligned}
$$

Equation 1

Reconstruction

$$
\begin{aligned}
& p^{\prime}=f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
& P^{\prime}=R^{T}(P-t)=R^{\prime}(P-t) \\
& p^{\prime}=f^{\prime} \frac{R^{\prime}(P-t)}{R_{3}^{\prime T}(P-t)} \\
& x^{\prime}=f^{\prime} \frac{R_{1}^{\prime T}(P-t)}{R_{3}^{\prime T}(P-t)} \\
& p=f \frac{P}{Z}
\end{aligned}
$$

$$
R^{\prime}=\left[\begin{array}{c}
R_{1}^{\prime T} \\
R_{2}^{\prime T} \\
R_{3}^{\prime T}
\end{array}\right]
$$

Equation 1

Reconstruction

$$
\begin{aligned}
& p^{\prime}=f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
& P^{\prime}=R^{T}(P-t)=R^{\prime}(P-t) \\
& p^{\prime}=f^{\prime} \frac{R^{\prime}(P-t)}{\left.{R_{3}^{\prime T}}^{T} P-t\right)} \\
& x^{\prime}=f^{\prime} \frac{R_{1}^{\prime T}(P-t)}{R_{3}^{\prime T}(P-t)} \\
& p=f \frac{P}{Z} \Rightarrow P=\frac{p Z}{f}
\end{aligned}
$$

$$
R^{\prime}=\left[\begin{array}{c}
R_{1}^{\prime T} \\
R_{2}^{\prime T} \\
R_{3}^{\prime T}
\end{array}\right]
$$

Equation 1

Reconstruction

$$
\begin{aligned}
& p^{\prime}=f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
& P^{\prime}=R^{T}(P-t)=R^{\prime}(P-t) \\
& p^{\prime}=f^{\prime} \frac{R^{\prime}(P-t)}{\left.{R_{3}^{\prime T}}^{T} P-t\right)} \\
& x^{\prime}=f^{\prime} \frac{R_{1}^{\prime T}(P-t)}{R_{3}^{\prime T}(P-t)} \\
& p=f \frac{P}{Z} \Rightarrow P=\frac{p Z}{f}
\end{aligned}
$$

Reconstruction

$$
\begin{aligned}
& p^{\prime}=f^{\prime} \frac{P^{\prime}}{Z^{\prime}} \\
& P^{\prime}=R^{T}(P-t)=R^{\prime}(P-t) \\
& p^{\prime}=f^{\prime} \frac{R^{\prime}(P-t)}{{R_{3}^{\prime T}(P-t)}^{x^{\prime}}} \\
& x^{\prime}=f^{\prime} \frac{R_{1}^{\prime T}(P-t)}{R_{3}^{\prime T}(P-t)} \\
& p=f \frac{P}{Z} \Rightarrow P=\frac{p Z}{f} \\
& Z=f \frac{\left(x^{\prime} R_{3}^{\prime}-f^{\prime} R_{1}^{\prime}\right)^{T} t}{\left(x^{\prime} R_{3}^{\prime}-f^{\prime} R_{1}^{\prime}\right)^{T} p}
\end{aligned}
$$

$$
R^{\prime}=\left[\begin{array}{c}
R_{1}^{\prime T} \\
R_{2}^{\prime T} \\
R_{3}^{\prime T}
\end{array}\right]
$$

Equation 1

Equation 2
(From equations 1 and 2)

Reconstruction up to a Scale Factor

- Assume that intrinsic parameters of both cameras are known
- Essential Matrix is known up to a scale factor (for example, estimated from the 8 point algorithm).

Reconstruction up to a Scale Factor

Reconstruction up to a Scale Factor

Reconstruction up to a Scale Factor
 $\mathcal{E} \mathcal{E}=k^{2}\left[t_{\star}\right] R R^{T}\left[t_{\star}\right]^{T}$

Reconstruction up to a Scale Factor
 $\mathcal{E} \mathcal{E}=k^{2}\left[t_{x}\right] R R^{T}\left[t_{x}\right]^{T}=k^{2}\left[\left[_{x}\right] I_{t_{x}}\right]^{T}$

$$
\begin{aligned}
& \text { Reconstruction up to a Scale } \\
& \text { Factor } \\
& \varepsilon \in=k^{2}=k^{2}\left[t_{x}\right] R R^{T}\left[t_{x}\right]^{T}=k^{2}\left[t_{x}\left[I_{x}\right]^{T}=\left[\begin{array}{ccc}
k^{2}\left(T_{x}^{2}+T_{z}^{2}\right) & -k^{2} T_{x} T_{y} & -k^{2} T_{x} T_{z} \\
-k^{2} T_{x} T_{x} & k^{2}\left(T_{x}^{x}+T_{z}^{2}\right) & -k^{2} T_{x} T_{z} \\
-k^{2} T_{x} T_{z} & -k^{2} T_{y} T_{z} & k^{2}\left(T_{x}^{2}+T_{x}^{2}\right)
\end{array}\right]\right.
\end{aligned}
$$

Reconstruction up to a Scale Factor

```
N
                Factor
*)
\[
\mathcal{E} \mathcal{E}=k^{2}\left[t_{x}\right] R R^{T}\left[t_{x}\right]^{T}=k^{2}\left[t_{x} \| t_{x}\right]^{T}=\begin{array}{llll}
-k^{2} T_{x} T_{y} & k^{2}\left(T_{x}^{2}+T_{z}^{2}\right) & -k^{2} T_{y} T_{X}
\end{array}
\]
\[
\left.\begin{array}{lll}
-k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2}\left(T_{X}^{2}+T_{Y}^{2}\right)
\end{array}\right]
\]
```

$\operatorname{Trace}\left[\boldsymbol{\mathcal { E }} \boldsymbol{\mathcal { C }}^{T}\right]=2 k^{2}\left(T_{X}^{2}+T_{Y}^{2}+T_{Z}^{2}\right)=2 k^{2}\|t\|^{2}$

Reconstruction up to a Scale Factor

$\left[\begin{array}{ccc}k^{2}\left(T_{Y}^{2}+T_{Z}^{2}\right) & -k^{2} T_{X} T_{Y} & -k^{2} T_{X} T_{Z} \\ -k^{2} T_{X} T_{Y} & k^{2}\left(T_{X}^{2}+T_{Z}^{2}\right) & -k^{2} T_{Y} T_{Z} \\ -k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2}\left(T_{X}^{2}+T_{Y}^{2}\right)\end{array}\right]$

Trace $\left[\boldsymbol{\mathcal { E }} \boldsymbol{\mathcal { C }}^{T}\right]=2 k^{2}\left(T_{X}^{2}+T_{Y}^{2}+T_{Z}^{2}\right)=2 k^{2}\|t\|^{2}$
$\frac{\mathcal{E}}{\mid k\|t\|}=\operatorname{sgn}(k) \frac{\left[t_{x}\right]}{\|t\|} R=\operatorname{sgn}(k)\left[\left(\frac{t}{\|t\|}\right)_{x}\right] R$

Reconstruction up to a Scale Factor

$\left[k^{2}\left(T_{y}^{2}+T_{z}^{2}\right)\right.$	-k	$-k^{2} T_{x} T_{z}$
$-k^{2} T_{x} T_{y}$	$k^{2}\left(T_{x}^{2}+T_{z}^{2}\right)$	$-k^{2} T_{2}$
$-k^{2} T_{x} T_{z}$	$-k^{2} T_{r} T_{z}$	$k^{2}\left(T_{x}^{2}+T_{x}^{2}\right)$

$\operatorname{Trace}[\varepsilon \mathcal{E}]=2 k^{2}\left(T_{x}^{2}+T_{y}^{2}+T_{z}^{2}\right)=2 k^{2} \|\left. t\right|^{2}$
$\frac{\mathcal{E}}{\mid k\|t\|}=\operatorname{sgn}(k) \frac{\left[t_{x}\right]}{\|t\|} R=\operatorname{sgn}(k)\left[\left(\frac{t}{\|t\|}\right)\right]_{x} R=\operatorname{sgn}(k)\left[\hat{t}_{x}\right] R$

Reconstruction up to a Scale Factor

$\left[k^{2}\left(T_{y}^{2}+T_{z}^{2}\right)\right.$	-k	$-k^{2} T_{x} T_{z}$
$-k^{2} T_{x} T_{y}$	$k^{2}\left(T_{x}^{2}+T_{z}^{2}\right)$	$-k^{2} T_{2}$
$-k^{2} T_{x} T_{z}$	$-k^{2} T_{r} T_{z}$	$k^{2}\left(T_{x}^{2}+T_{x}^{2}\right)$

$\operatorname{Trace}[\mathcal{E} \mathcal{E}]=2 k^{2}\left(T_{x}^{2}+T_{y}^{2}+T_{Z}^{2}\right)=2 k^{2} \mid t \|^{2}$
$\left.\frac{\mathcal{E}}{|k \| t| \mid}=\operatorname{sgn}(k) \frac{\left[t_{x}\right]^{\prime}}{\|t\|} R=\operatorname{sgn}(k)\left[\left(\frac{t}{\|t\|}\right)\right]_{x}\right]_{\sin }(k)\left[\hat{t}_{x}\right] R=\hat{E}$

Reconstruction up to a Scale Factor

$\left[\begin{array}{ccc}k^{2}\left(T_{z}^{2}+T_{z}^{2}\right) & -k^{2} T_{X} T_{y} & -k^{2} T_{X} T_{z} \\ -k^{2} T_{T} T_{y} & k^{2}\left(T_{x}^{2}+T_{z}^{2}\right) & -k^{2} T_{T} T_{z} \\ -k^{2} T_{x} T_{z} & -k^{2} T_{x} T_{z} & k^{2}\left(T_{x}^{2}+T_{y}^{2}\right)\end{array}\right]$
$\operatorname{Trace}[\mathcal{E} \mathcal{E}]=2 k^{2}\left(T_{x}^{2}+T_{y}^{2}+T_{Z}^{2}\right)=2 k^{2}|t|^{2}$
$\left.\frac{\mathcal{E}}{|k \| t| \mid}=\operatorname{sgn}(k) \frac{\left[t_{x}\right]^{\prime}}{\|t\|} R=\operatorname{sgn}(k)\left[\left(\frac{t}{\|t\|}\right)\right]_{x}\right]_{\operatorname{sgn}(k)\left[\hat{t}_{x}\right] R=\hat{E}}$
$\hat{E} \hat{E}^{T}=\left[\hat{t}_{\times}\left[\hat{t}_{x}\right]^{T}\right.$

Reconstruction up to a Scale Factor

$\left[t_{x}\right] R$

$$
\left[\begin{array}{lll}
k^{2}\left(T_{x}^{2}+T_{z}^{2}\right) & -k^{2} T_{x} T_{x} & -k^{2} T_{x} T_{z}
\end{array}\right.
$$

$$
\mathcal{E} \mathcal{E}=k^{2}\left[t_{x}\right] R R^{T}\left[t_{x}\right]^{T}=k^{2}\left[t_{x} \| t_{x}\right]^{T}=\begin{array}{lll}
-k^{2} T_{x} T_{X} & k^{2}\left(T_{x}^{2}+T_{z}^{2}\right) & -k^{2} T_{Y} T_{X}
\end{array}
$$

$$
\left.-k^{2} T_{X} T_{Z} \quad-k^{2} T_{Y} T_{Z} \quad k^{2}\left(T_{X}^{2}+T_{Y}^{2}\right)\right]
$$

$$
\operatorname{Trace}\left[\mathcal{E} \mathcal{E}^{\mathrm{T}}\right]=2 k^{2}\left(T_{X}^{2}+T_{Y}^{2}+T_{Z}^{2}\right)=2 k^{2}\|t\|^{2}
$$

$$
\frac{\mathcal{E}}{\mid k\|t\|}=\operatorname{sgn}(k) \frac{\left[t_{\times}\right]}{\|t\|} R=\operatorname{sgn}(k)\left[\left(\frac{t}{\|t\|}\right)_{x}\right] R=\operatorname{sgn}(k)\left[\hat{t}_{\times}\right] R=\hat{E}
$$

$$
\hat{E} \hat{E}^{T}=\left[\hat{t}_{\times}\right]\left[\hat{t}_{\times}\right]^{T}=\left[\begin{array}{ccc}
1-\hat{T}_{X}^{2} & -\hat{T}_{X} \hat{T}_{Y} & -\hat{T}_{X} \hat{T}_{Z} \\
-\hat{T}_{X} \hat{T}_{Y} & 1-\hat{T}_{Y}^{2} & -\hat{T}_{Y} \hat{T}_{Z} \\
-\hat{T}_{X} \hat{T}_{Z} & -\hat{T}_{Y} \hat{T}_{Z} & 1-\hat{T}_{Z}^{2}
\end{array}\right]
$$

Reconstruction up to a Scale Factor

$\hat{E}=\left[\begin{array}{c}\hat{E}_{1}^{T} \\ \hat{E}_{2}^{T} \\ \hat{E}_{3}^{T}\end{array}\right]$
$R=\left[\begin{array}{l}R_{1}^{T} \\ R_{2}^{T} \\ R_{3}^{T}\end{array}\right]$

Let $w_{i}=\hat{E}_{i} \times \hat{t}, i \in\{1,2,3\}$
It can be proved that

$$
\begin{aligned}
& R_{1}=w_{1}+w_{2} \times w_{3} \\
& R_{2}=w_{2}+w_{3} \times w_{1} \\
& R_{3}=w_{3}+w_{1} \times w_{2}
\end{aligned}
$$

Reconstruction up to a Scale Factor

We have two choices of \mathbf{t}, (\mathbf{t}^{+}and $\mathrm{t}^{\text {- }}$) because of sign ambiguity and two choices of $\mathrm{E},\left(\mathrm{E}^{+}\right.$and $\left.\mathrm{E}^{-}\right)$.

This gives us four pairs of translation vectors and rotation matrices.

Reconstruction up to a Scale Factor

Given \hat{E} and \hat{t}

1. Construct the vectors \mathbf{w}, and compute R
2. Reconstruct the Z and Z^{\prime} for each point
3. If the signs of Z and Z^{\prime} of the reconstructed points are
a) both negative for some point, change the sign of \hat{t} and go to step 2.
b) different for some point, change the sign of each entry of \hat{E} and go to step 1.
c) both positive for all points, exit.

$$
\begin{aligned}
& Z=f \frac{\left(x^{\prime} R_{3}^{\prime}-f^{\prime} R_{1}^{\prime}\right)^{T} t}{\left(x^{\prime} R_{3}^{\prime}-f^{\prime} R_{1}^{\prime}\right)^{T} p} \\
& Z^{\prime}=-f^{\prime} \frac{\left(x R_{3}-f R_{1}\right)^{T}(t)}{\left(x R_{3}-f R_{1}\right)^{T} p^{\prime}}
\end{aligned}
$$

3D Reconstruction

[Trucco pp. 161]

- Three cases:
- a) intrinsic and extrinsic parameters known: Solve reconstruction by triangulation: ray intersection
- b) only intrinsic parameters known: estimate essential matrix E up to scaling
- c) intrinsic and extrinsic parameters not known: estimate fundamental matrix F , reconstruction up to global, projective transformation

Run Example

Demo for stereo reconstruction:

http://mitpress.mit.edu/e-journals/Videre/001/articles/Zhang/CalibEnv/CalibEnv.html

