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Reconstruction

Only need to match 
features across epipolar
lines



Reconstruction from Rectified Images

Disparity: d=u’-u Depth: z = -Bf/d



Problem statement
Given: corresponding measured (i.e. noisy) points x and x/ , and 
cameras (exact) P and P/, compute the 3D point X

Problem: in the presence of noise, back projected rays do not intersect

C C /

rays are skew in spacex x /



Problem statement
Given: corresponding measured (i.e. noisy) points x and x/ , and 
cameras (exact) P and P/, compute the 3D point X

Problem: in the presence of noise, back projected rays do not intersect

C C /

rays are skew in space

Measured points do not lie on corresponding epipolar lines

x x /



1. Vector solution

C C /

Compute the mid-point of the shortest line between the 
two rays



Solution from Trucco & Verri Book

Source: Collins, CSE486 Penn State 

http://www.cse.psu.edu/%7Ertc12/CSE486/lecture21.pdf
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Source: Collins, CSE486 Penn State 

http://www.cse.psu.edu/%7Ertc12/CSE486/lecture21.pdf


2. Linear triangulation (algebraic solution)



Problem: does not minimize anything meaningful

Advantage: extends to more than two views



3. Minimizing a geometric/statistical error



• It can be shown that if the measurement noise is 
Gaussian mean zero,                  , then minimizing 
geometric error is the Maximum Likelihood Estimate of X

• The minimization appears to be over three parameters 
(the position X), but the problem can be reduced to a 
minimization over one parameter



Different formulation of the problem



Minimization method
• Parametrize the pencil of epipolar lines in the first image by t, 
such that the epipolar line is l(t)

• Using F compute the corresponding epipolar line in the second 
image l/ (t)

• Express the distance function                                 explicitly as a 
function of t

• Find the value of t that minimizes the distance function

• Solution is a 6th degree polynomial in t



More slides for self-study. 



Triangulation (finally!)
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Triangulation
- calibration

- correspondences
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Triangulation

• Backprojection

• Triangulation

Iterative least-
squares
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Triangulation

• Backprojection

• Triangulation

Iterative least-
squares• Maximum Likelihood Triangulation

C1 x1 L1

x2

L2

X

C
2



Optimal 3D point in epipolar 
plane

• Given an epipolar plane, find best 3D point for 
(m1,m2)
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Optimal 3D point in epipolar 
plane

• Given an epipolar plane, find best 3D point for 
(m1,m2)

m1

m2

l1 l2

l1
m1

m2
l2

m1´
m2´

Select closest points (m1´,m2´) on epipolar lines
Obtain 3D point through exact triangulation
Guarantees minimal reprojection error (given this epipolar 
plane)



Non-iterative optimal solution

• Reconstruct matches in projective frame 
by minimizing the reprojection error

• Non-iterative method
Determine the epipolar plane for 

reconstruction

Reconstruct optimal point from selected epipolar 
plane 

Note: only works for two views
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Backprojection

• Represent point as intersection of row and column 
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Backprojection

• Represent point as intersection of row and column 

• Condition for solution?



Backprojection

• Represent point as intersection of row and column 

Useful presentation for deriving and understanding multiple view geometry
(notice 3D planes are linear in 2D point coordinates)

• Condition for solution?
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Reconstruction up to a Scale 
Factor

• Assume that intrinsic parameters of both cameras 
are known
• Essential Matrix is known up to a scale factor (for 
example, 
estimated from the 8 point algorithm).



Reconstruction up to a Scale 
Factorε [ ]Rtk ×=



Reconstruction up to a Scale 
Factorε [ ]Rtk ×=

Tεε



Reconstruction up to a Scale 
Factorε [ ]Rtk ×=

Tεε [ ] [ ]TT tRRtk ××= 2



Reconstruction up to a Scale 
Factorε [ ]Rtk ×=

Tεε [ ] [ ]TT tRRtk ××= 2 [ ][ ]Tttk ××= 2



Reconstruction up to a Scale 
Factorε [ ]Rtk ×=

Tεε [ ] [ ]TT tRRtk ××= 2 [ ][ ]Tttk ××= 2
( )

( )
( )
















+−−
−+−
−−+

=
22222

22222

22222

YXZYZX

ZYZXYX

ZXYXZY

TTkTTkTTk
TTkTTkTTk
TTkTTkTTk



Reconstruction up to a Scale 
Factorε [ ]Rtk ×=

Tεε [ ] [ ]TT tRRtk ××= 2 [ ][ ]Tttk ××= 2
( )

( )
( )
















+−−
−+−
−−+

=
22222

22222

22222

YXZYZX

ZYZXYX

ZXYXZY

TTkTTkTTk
TTkTTkTTk
TTkTTkTTk

[Trace Tεε ] ( ) 222222 22 tkTTTk ZYX =++=



Reconstruction up to a Scale 
Factorε [ ]Rtk ×=

Tεε [ ] [ ]TT tRRtk ××= 2 [ ][ ]Tttk ××= 2
( )

( )
( )
















+−−
−+−
−−+

=
22222

22222

22222

YXZYZX

ZYZXYX

ZXYXZY

TTkTTkTTk
TTkTTkTTk
TTkTTkTTk

[Trace Tεε ] ( ) 222222 22 tkTTTk ZYX =++=

tk
ε ( )[ ] ( ) R

t
tkR

t
tk






















==

×

× sgnsgn



Reconstruction up to a Scale 
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Reconstruction up to a Scale 
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Reconstruction up to a Scale 
Factor
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Reconstruction up to a Scale 
Factor

We have two choices of t, (t+ and t-) because of sign 
ambiguity
and two choices of E, (E+ and E-).

This gives us four pairs of translation vectors and 
rotation matrices.



Reconstruction up to a Scale 
Factor

Given      and Ê t̂

1. Construct the vectors w, and compute R
2. Reconstruct the Z and Z’ for each point
3. If the signs of Z and Z’ of the reconstructed points are

a) both negative for some point, change the sign of
and go to step 2.

b) different for some point, change the sign of each entry
of      and go to step 1.

c) both positive for all points, exit. 
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3D Reconstruction

[Trucco pp. 161]
• Three cases:

– a) intrinsic and extrinsic parameters 
known: Solve reconstruction by 
triangulation: ray intersection 

– b) only intrinsic parameters known: 
estimate essential matrix E up to scaling

– c) intrinsic and extrinsic parameters not 
known: estimate fundamental matrix F, 
reconstruction up to global, projective 
transformation 



Run Example

Demo for stereo reconstruction:
http://mitpress.mit.edu/e-journals/Videre/001/articles/Zhang/CalibEnv/CalibEnv.html

http://mitpress.mit.edu/e-journals/Videre/001/articles/Zhang/CalibEnv/CalibEnv.html
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